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Energy Band Gap in a Periodic Potential 
Recall the electrostatic potential energy in a crystalline solid along a line
passing through a line of atoms:
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Along a line parallel to this but running between atoms, the divergences
of the periodic potential energy are softened.

A simple 1D model that captures the periodicity of such a potential is:

÷
ø
ö

ç
è
æ+=
a
xUUxU p2cos)( 10U

x

010 <<UU

U0

U1



Electron Wavefunctions in a Periodic Potential
Consider the following cases:

Electrons wavelengths much larger than a, so wavefunctions and 
energy bands are nearly the same as above
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Wavefunctions are plane waves 
and energy bands are parabolic:
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¹ 01 Electrons waves are strongly back-scattered (Bragg scattering) so 
standing waves are formed:
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¹ 01 Electrons wavelengths approach a, so waves begin to be strongly 
back-scattered :
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Bloch Theorem and Wavefunctions
Bloch theorem is one of the most important formal results in all of solid
state physics because it tells us the mathematical form of an electron
wavefunction in the presence of a periodic potential energy.
In independent-electron approximation, the time-independent
Schrodinger equation (SE) for an electron in a periodic potential is:
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where the potential energy is invariant under a lattice translation vector T :

Bloch showed that the solutions to the SE are the product of a plane
wave and a function with the periodicity of the lattice:

U(r + T) = U(r)       and   T = ua + vb + wc

and uk(r + T) = uk(r)𝜓k(r ) = uk(r)eik･r



Bloch Wavefunctions

This result gives evidence to support the nearly-free electron approximation,
in which the periodic potential is assumed to have a very small effect on the
plane-wave character of a free electron wavefunction. It also explains why
the free-electron gas model is so successful for the simple metals!
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Band Gap
The band gap is the difference in energy between
the lowest point of the conduction band and the
highest point of the valence band. The lowest
point in the conduction band is called the
conduction band edge; the highest point in the
valence band is called the valence band edge.190

substantial wavevector kc. Here a direct photon transition at the energy of the
minimum gap cannot satisfy the requirement of conservation of wavevector,
because photon wavevectors are negligible at the energy range of interest. But
if a phonon of wavevector K and frequency ! is created in the process, then
we can have

as required by the conservation laws. The phonon energy will generally be
much less than Eg: a phonon even of high wavevector is an easily accessible
source of crystal momentum because the phonon energies are characteristi-
cally small (!0.01 to 0.03 eV) in comparison with the energy gap. If the tem-
perature is high enough that the necessary phonon is already thermally excited
in the crystal, it is possible also to have a photon absorption process in which
the phonon is absorbed.

The band gap may also be deduced from the temperature dependence
of the conductivity or of the carrier concentration in the intrinsic range. The
carrier concentration is obtained from measurements of the Hall voltage
(Chapter 6), sometimes supplemented by conductivity measurements. Optical
measurements determine whether the gap is direct or indirect. The band
edges in Ge and in Si are connected by indirect transitions; the band edges in
InSb and GaAs are connected by a direct transition (Fig. 6). The gap in !Sn is

!!

k(photon) " kc # K " 0 ;   !" " Eg # !! ,

Table 1  Energy gap between the valence and conduction bands

(i ! indirect gap; d ! direct gap)

Eg, eV Eg, eV

Crystal Gap 0 K 300 K Crystal Gap 0 K 300 K

Diamond i 5.4 SiC(hex) i 3.0 —
Si i 1.17 1.11 Tc d 0.33 —
Ge i 0.744 0.66 HgTea d $0.30
!Sn d 0.00 0.00 PbS d 0.286 0.34–0.37
InSb d 0.23 0.17 PbSe i 0.165 0.27
InAs d 0.43 0.36 PbTe i 0.190 0.29
InP d 1.42 1.27 CdS d 2.582 2.42
GaP i 2.32 2.25 CdSe d 1.840 1.74
GaAs d 1.52 1.43 CdTe d 1.607 1.44
GaSb d 0.81 0.68 SnTe d 0.3 0.18
AlSb i 1.65 1.6 Cu2O d 2.172 —

aHgTe is a semimetal; the bands overlap.
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Figure 2 Band scheme for intrinsic conductivity in a semiconductor. At 0 K the conductivity is
zero because all states in the valence band are filled and all states in the conduction band are va-
cant. As the temperature is increased, electrons are thermally excited from the valence band to the
conduction band, where they become mobile. Such carriers are called “intrinsic.”
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Figure 3 Intrinsic electron concentration as a function of temperature for (a) germanium and 
(b) silicon. Under intrinsic conditions the hole concentration is equal to the electron concentra-
tion. The intrinsic concentration at a given temperature is higher in Ge than in Si because the
energy gap is narrower in Ge (0.66 eV) than in Si (1.11 eV). (After W. C. Dunlap.)

conductivity will be low. Band gaps of representative semiconductors are given
in Table 1. The best values of the band gap are obtained by optical absorption.

In a direct absorption process the threshold of continuous optical ab-
sorption at frequency !g measures the band gap as shown in Figs. 4a
and 5a. A photon is absorbed by the crystal with the creation of an electron
and a hole.

In the indirect absorption process in Figs. 4b and 5b the minimum
energy gap of the band structure involves electrons and holes separated by a

Eg ! !!g
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Direct and Indirect Band Gaps

Band gaps can be measured by
optical absorption. In a direct
absorption process the
threshold of continuous optical
absorption at ωg measures the
energy band gap Eg = ℏωg.

In the indirect absorption
process the minimum energy
gap of the band structure
involves electrons and holes
separated by a substantial
wavevector kc. If a phonon of
wavevector K and frequency Ω
is created, then
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Figure 4 Optical absorption in pure insulators at absolute zero. In (a) the threshold determines
the energy gap as In (b) the optical absorption is weaker near the threshold: at

a photon is absorbed with the creation of three particles: a free electron, a free
hole, and a phonon of energy . In (b) the energy Evert marks the threshold for the creation of a
free electron and a free hole, with no phonon involved. Such a transition is called vertical; it is
similar to the direct transition in (a). These plots do not show absorption lines that sometimes are
seen lying just to the low energy side of the threshold. Such lines are due to the creation of a
bound electron-hole pair, called an exciton.
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Figure 5 In (a) the lowest point of the conduction band occurs at the same value of k as the highest
point of the valence band. A direct optical transition is drawn vertically with no significant change of
k, because the absorbed photon has a very small wavevector. The threshold frequency !g for absorp-
tion by the direct transition determines the energy gap The indirect transition in (b) in-
volves both a photon and a phonon because the band edges of the conduction and valence bands are
widely separated in k space. The threshold energy for the indirect process in (b) is greater than the
true band gap. The absorption threshold for the indirect transition between the band edges is at

, where " is the frequency of an emitted phonon of wavevector K ! &kg. At higher
temperatures phonons are already present; if a phonon is absorbed along with a photon, the thresh-
old energy is . Note: The figure shows only the threshold transitions. Transitions occur
generally between almost all points of the two bands for which the wavevectors and energy can be
conserved.
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substantial wavevector kc. Here a direct photon transition at the energy of the
minimum gap cannot satisfy the requirement of conservation of wavevector,
because photon wavevectors are negligible at the energy range of interest. But
if a phonon of wavevector K and frequency ! is created in the process, then
we can have

as required by the conservation laws. The phonon energy will generally be
much less than Eg: a phonon even of high wavevector is an easily accessible
source of crystal momentum because the phonon energies are characteristi-
cally small (!0.01 to 0.03 eV) in comparison with the energy gap. If the tem-
perature is high enough that the necessary phonon is already thermally excited
in the crystal, it is possible also to have a photon absorption process in which
the phonon is absorbed.

The band gap may also be deduced from the temperature dependence
of the conductivity or of the carrier concentration in the intrinsic range. The
carrier concentration is obtained from measurements of the Hall voltage
(Chapter 6), sometimes supplemented by conductivity measurements. Optical
measurements determine whether the gap is direct or indirect. The band
edges in Ge and in Si are connected by indirect transitions; the band edges in
InSb and GaAs are connected by a direct transition (Fig. 6). The gap in !Sn is

!!

k(photon) " kc # K " 0 ;   !" " Eg # !! ,

Table 1  Energy gap between the valence and conduction bands

(i ! indirect gap; d ! direct gap)

Eg, eV Eg, eV

Crystal Gap 0 K 300 K Crystal Gap 0 K 300 K

Diamond i 5.4 SiC(hex) i 3.0 —
Si i 1.17 1.11 Tc d 0.33 —
Ge i 0.744 0.66 HgTea d $0.30
!Sn d 0.00 0.00 PbS d 0.286 0.34–0.37
InSb d 0.23 0.17 PbSe i 0.165 0.27
InAs d 0.43 0.36 PbTe i 0.190 0.29
InP d 1.42 1.27 CdS d 2.582 2.42
GaP i 2.32 2.25 CdSe d 1.840 1.74
GaAs d 1.52 1.43 CdTe d 1.607 1.44
GaSb d 0.81 0.68 SnTe d 0.3 0.18
AlSb i 1.65 1.6 Cu2O d 2.172 —

aHgTe is a semimetal; the bands overlap.
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Equations of Motion
The propagation speed of an electron wavepacket in a periodic crystal can
be calculated from the energy band along that direction in reciprocal space:

dk
dE

dk
dvg

!
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==

welectron velocity:  (1-D) (3-D)    vg(k) = ℏ-1𝝯kϵ(k)

,     and  since

we have                                     and   ℏdk/dt = −eE = F , so we obtain

The work 𝛿ϵ done on the electron by the electric field E in the time interval
𝛿t is

This is an important relation: in a crystal ℏdk/dt is equal to the external
force on the electron. In free space d(mv)/dt is equal to the force. We have
not overthrown Newton’s second law of motion: the electron in the crystal
is subject to forces from the crystal lattice as well as from external sources.

The work !" done on the electron by the electric field E in the time
interval !t is

(2)

We observe that

(3)

using (1). On comparing (2) with (3) we have

(4)

whence 
We may write (4) in terms of the external force F as

(5)

This is an important relation: in a crystal is equal to the external force
on the electron. In free space d(mv)/dt is equal to the force. We have not over-
thrown Newton’s second law of motion: the electron in the crystal is subject to
forces from the crystal lattice as well as from external sources.

The force term in (5) also includes the electric field and the Lorentz force
on an electron in a magnetic field, under ordinary conditions where the mag-
netic field is not so strong that it breaks down the band structure. Thus the
equation of motion of an electron of group velocity v in a constant magnetic
field B is

(CGS) (6)

where the right-hand side of each equation is the Lorentz force on the electron.
With the group velocity the rate of change of the wavevector is

(CGS) (7)

where now both sides of the equation refer to the coordinates in k space.
We see from the vector cross-product in (7) that in a magnetic field

an electron moves in k space in a direction normal to the direction of the gra-
dient of the energy ", so that the electron moves on a surface of constant
energy. The value of the projection kB of k on B is constant during the
motion. The motion in k space is on a plane normal to the direction of B, and
the orbit is defined by the intersection of this plane with a surface of constant
energy.
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In a constant magnetic field B, the equation of motion is

or with v =	ℏ-1𝝯kϵ

an electron moves in k space in a
direction normal to the direction
of the gradient of the energy ϵ, so
that the electron moves on a
surface of constant energy. The
value of the projection kB of k on B
is constant during the motion. The
motion in k space is on a plane
normal to the direction of B, and
the orbit is defined by the
intersection of this plane with a
surface of constant energy.

The work !" done on the electron by the electric field E in the time
interval !t is

(2)

We observe that

(3)

using (1). On comparing (2) with (3) we have

(4)

whence 
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We suppose that a weak external force is applied to the crystal in a time
interval such that the total impulse is J = ∫F dt. We will have

Physical Derivation of Equations of Motion
We consider the Bloch eigenfunction 𝜓k belonging to the energy eigen-
value ϵk and wavevector k:

The expectation value of the momentum of an electron in the Bloch state
k is

Physical Derivation of 

We consider the Bloch eigenfunction !k belonging to the energy eigen-
value "k and wavevector k:
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The expectation value of the momentum of an electron in the Bloch state k is

(9)

using 
We examine the transfer of momentum between the electron and the lat-

tice when the state k of the electron is changed to k ! "k by the application
of an external force. We imagine an insulating crystal electrostatically neutral
except for a single electron in the state k of an otherwise empty band.

We suppose that a weak external force is applied for a time interval such
that the total impulse given to the entire crystal system is J # !F dt. If the
conduction electron were free (m* # m), the total momentum imparted to
the crystal system by the impulse would appear in the change of momentum of
the conduction electron:

(10)

The neutral crystal suffers no net interaction with the electric field, either 
directly or indirectly through the free electron.

If the conduction electron interacts with the periodic potential of the crys-
tal lattice, we must have

(11)

From the result (9) for pel we have

(12)

The change "plat in the lattice momentum resulting from the change of
state of the electron may be derived by an elementary physical consideration.
An electron reflected by the lattice transfers momentum to the lattice. If an
incident electron with plane wave component of momentum is reflected
with momentum the lattice acquires the momentum as re-
quired by momentum conservation. The momentum transfer to the lattice
when the state !k goes over to !k!"k is
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Since dJ/dt = F, we thus have 

The change of momentum of the electron will be
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The total momentum change is therefore

because the portion

(14)

of each individual component of the initial state is reflected during the state
change !k.

The total momentum change is therefore

(15)

exactly as for free electrons, Eq. (10). Thus from the definition of J, we have

(16)

derived in (5) by a different method. A rigorous derivation of (16) by an en-
tirely different method is given in Appendix E.

Holes

The properties of vacant orbitals in an otherwise filled band are important
in semiconductor physics and in solid state electronics. Vacant orbitals in a
band are commonly called holes, and without holes there would be no transis-
tors. A hole acts in applied electric and magnetic fields as if it has a positive
charge "e. The reason is given in five steps in the boxes that follow.

!dk  /dt # F ,

!pel " !plat # J # !!k ,

$k !C(k " G) !2 ! !k 
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1. (17)

The total wavevector of the electrons in a filled band is zero: "k # 0,
where the sum is over all states in a Brillouin zone. This result follows
from the geometrical symmetry of the Brillouin zone: every fundamental
lattice type has symmetry under the inversion operation r→ %r about
any lattice point; it follows that the Brillouin zone of the lattice also has
inversion symmetry. If the band is filled all pairs of orbitals k and %k are
filled, and the total wavevector is zero.

If an electron is missing from an orbital of wavevector ke, the total
wavevector of the system is %ke and is attributed to the hole. This result
is surprising: the electron is missing from ke and the position of the hole
is usually indicated graphically as situated at ke, as in Fig. 7. But the true
wavevector kh of the hole is %ke, which is the wavevector of the point G
if the hole is at E. The wavevector %ke enters into selection rules for
photon absorption.

The hole is an alternate description of a band with one missing elec-
tron, and we either say that the hole has wavevector %ke or that the band
with one missing electron has total wavevector %ke.

kh # %ke .
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Band Electron in E Field
Now we see that the external electric field causes a change in the k
vectors of all electrons:

Ee
dt
kdF

!
!

"
!

-==
!

""
Ee

dt
kd -
=

E

kx

a
pa

p-
v

kx

If the electrons are in a partially filled band, this
will break the symmetry of electron states in the
1st BZ and produce a net current. But if they are
in a filled band, even though all electrons change
k vectors, the symmetry remains, so J = 0.
When an electron reaches the 1st BZ edge (at k =
p/a) it immediately reappears at the opposite
edge (k = -p/a) and continues to increase its k .
As an electron’s k value increases, its velocity
increases, then decreases to zero and then
becomes negative when it reemerges at k = -p/a.
Thus, an AC current is predicted to result from a
DC field (Bloch oscillations).



Properties of Holes

Holes are vacant orbits in a band whose properties are important in an
almost filled band.

1. Crystal momentum:  kh = −ke

A hole acts in applied electric and magnetic fields as if it has a positive
charge +e. The reason is given in five steps that follow:

The total wavevector of the electrons in a filled band is zero: Σk = 0,
where the sum is over all states in a Brillouin zone. This result follows
from the geometrical symmetry of the Brillouin zone: every
fundamental lattice type has symmetry under the inversion operation
r→ −r about any lattice point; it follows that the Brillouin zone of the
lattice also has inversion symmetry. If the band is filled all pairs of
orbitals k and −k are filled, and the total wavevector is zero.
If an electron is missing from an orbital of wavevector ke, the total
wavevector of the system is −ke and is attributed to the hole.



2. Energy:

The energy of the hole is opposite in sign to the energy of the missing
electron, because it takes more work to remove an electron from a
low orbital than from a high orbital.

196

4. (20)

We show below that the effective mass is inversely proportional to the
curvature d2!/dk2, and for the hole band this has the opposite sign to that
for an electron in the valence band. Near the top of the valence band me

is negative, so that mh is positive.

5. (21)

This comes from the equation of motion

(CGS) (22)

that applies to the missing electron when we substitute !kh for ke and vh

for ve. The equation of motion for a hole is that of a particle of
positive charge e. The positive charge is consistent with the electric
current carried by the valence band of Fig. 9: the current is carried by
the unpaired electron in the orbital G:

(23)

which is just the current of a positive charge moving with the velocity as-
cribed to the missing electron at E. The current is shown in Fig. 10.

j " (!e)v(G) "(!e)[!v(E)] " ev(E) ,

!
dke

dt
 " !e(E #1

cve $ B)

! 
dkh

dt
 " e(E # 1c vh $ B) .

mh " !me .

!

kh

ke

k

Hole band constructed
with kh = –ke and
!h(kh) = –!e(ke), to
simulate dynamics

of a hole.

Valence band
with one

electron missing

Figure 8 The upper half of the figure shows the hole band that simulates the dynamics of a hole,
constructed by inversion of the valence band in the origin. The wavevector and energy of the hole
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va-
lence band. We do not show the disposition of the electron removed from the valence band at ke.
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2. (18)

Here the zero of energy of the valence band is at the top of the band.
The lower in the band the missing electron lies, the higher the energy of
the system. The energy of the hole is opposite in sign to the energy of
the missing electron, because it takes more work to remove an electron
from a low orbital than from a high orbital. Thus if the band is symmet-
ric,1 !e(ke) ! !e("ke) ! "!h("ke)! "!h(kh). We construct in Fig. 8 a
band scheme to represent the properties of a hole. This hole band is a
helpful representation because it appears right side up.

3. (19)

The velocity of the hole is equal to the velocity of the missing electron.
From Fig. 8 we see that so that vh(kh) ! ve(k e).#!h(kh) ! #!e(ke),

vh ! ve .

!h(kh) ! "!e(k e) .

!

kh
ke

k
GE

Q

Valence band

Electron removed

Conduction band

$"

Figure 7 Absorption of a photon of energy and negligible wavevector takes an electron from
E in the filled valence band to Q in the conduction band. If ke was the wavevector of the electron
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band
after the absorption is "ke, and this is the wavevector we must ascribe to the hole if we describe
the valence band as occupied by one hole. Thus kh ! "ke; the wavevector of the hole is the same
as the wavevector of the electron which remains at G. For the entire system the total wavevector
after the absorption of the photon is ke % kh ! 0, so that the total wavevector is unchanged by the
absorption of the photon and the creation of a free electron and free hole.

!"

1Bands are always symmetric under the inversion k → "k if the spin-orbit interaction is
neglected. Even with spin-orbit interaction, bands are always symmetric if the crystal structure
permits the inversion operation. Without a center of symmetry, but with spin-orbit interaction, the
bands are symmetric if we compare subbands for which the spin direction is reversed: !(k, ↑) !
!("k, ↓). See QTS, Chapter 9.
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the system. The energy of the hole is opposite in sign to the energy of
the missing electron, because it takes more work to remove an electron
from a low orbital than from a high orbital. Thus if the band is symmet-
ric,1 !e(ke) ! !e("ke) ! "!h("ke)! "!h(kh). We construct in Fig. 8 a
band scheme to represent the properties of a hole. This hole band is a
helpful representation because it appears right side up.

3. (19)

The velocity of the hole is equal to the velocity of the missing electron.
From Fig. 8 we see that so that vh(kh) ! ve(k e).#!h(kh) ! #!e(ke),

vh ! ve .

!h(kh) ! "!e(k e) .

!

kh
ke

k
GE

Q

Valence band

Electron removed

Conduction band

$"

Figure 7 Absorption of a photon of energy and negligible wavevector takes an electron from
E in the filled valence band to Q in the conduction band. If ke was the wavevector of the electron
at E, it becomes the wavevector of the electron at Q. The total wavevector of the valence band
after the absorption is "ke, and this is the wavevector we must ascribe to the hole if we describe
the valence band as occupied by one hole. Thus kh ! "ke; the wavevector of the hole is the same
as the wavevector of the electron which remains at G. For the entire system the total wavevector
after the absorption of the photon is ke % kh ! 0, so that the total wavevector is unchanged by the
absorption of the photon and the creation of a free electron and free hole.

!"

1Bands are always symmetric under the inversion k → "k if the spin-orbit interaction is
neglected. Even with spin-orbit interaction, bands are always symmetric if the crystal structure
permits the inversion operation. Without a center of symmetry, but with spin-orbit interaction, the
bands are symmetric if we compare subbands for which the spin direction is reversed: !(k, ↑) !
!("k, ↓). See QTS, Chapter 9.
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3. Velocity:  vh = ve

Since

4. Effective mass:

The velocity of the hole is equal to the velocity of the missing electron. 

mh = −me

The effective mass is inversely
proportional to the curvature
d2ϵ/dk2, and for the hole band
this has the opposite sign to
that for an electron in the
valence band.
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4. (20)

We show below that the effective mass is inversely proportional to the
curvature d2!/dk2, and for the hole band this has the opposite sign to that
for an electron in the valence band. Near the top of the valence band me

is negative, so that mh is positive.

5. (21)

This comes from the equation of motion

(CGS) (22)

that applies to the missing electron when we substitute !kh for ke and vh

for ve. The equation of motion for a hole is that of a particle of
positive charge e. The positive charge is consistent with the electric
current carried by the valence band of Fig. 9: the current is carried by
the unpaired electron in the orbital G:

(23)

which is just the current of a positive charge moving with the velocity as-
cribed to the missing electron at E. The current is shown in Fig. 10.

j " (!e)v(G) "(!e)[!v(E)] " ev(E) ,

!
dke

dt
 " !e(E #1

cve $ B)

! 
dkh

dt
 " e(E # 1c vh $ B) .

mh " !me .

!

kh

ke

k

Hole band constructed
with kh = –ke and
!h(kh) = –!e(ke), to
simulate dynamics

of a hole.

Valence band
with one

electron missing

Figure 8 The upper half of the figure shows the hole band that simulates the dynamics of a hole,
constructed by inversion of the valence band in the origin. The wavevector and energy of the hole
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va-
lence band. We do not show the disposition of the electron removed from the valence band at ke.
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5. Equation of motion:

The equation of motion for a hole is that of a particle of positive 
charge e. 8  Semiconductor Crystals 197

Effective Mass

When we look at the energy-wavevector relation for free
electrons, we see that the coefficient of k2 determines the curvature of ! versus
k. Turned about, we can say that 1/m, the reciprocal mass, determines the cur-
vature. For electrons in a band there can be regions of unusually high curva-
ture near the band gap at the zone boundary, as we see from the solutions in
Chapter 7 of the wave equation near the zone boundary. If the energy gap is
small in comparison with the free electron energy " at the boundary, the cur-
vature is enhanced by the factor "/Eg.

In semiconductors the band width, which is like the free electron energy,
is of the order of 20 eV, while the band gap is of the order of 0.2 to 2 eV. Thus
the reciprocal mass is enhanced by a factor 10 to 100, and the effective mass is
reduced to 0.1–0.01 of the free electron mass. These values apply near the
band gap; as we go away from the gap the curvatures and the masses are likely
to approach those of free electrons.

To summarize the solutions of Chapter 7 for U positive, an electron near
the lower edge of the second band has an energy that may be written as

(24)!(K) ! !c " (!2/2me)K2 ;   me 

/m ! 1 /[(2"/U)#1] .

! ! (!2/2m)k2

Ex

kx

!

A
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C
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G
H
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J

K

(b)
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!
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C
D

E

F

G
H

I
J
K

(c)

kx

!

A
B

C
D E

F
G H I

J
K

(a)

Figure 9 (a) At t ! 0 all states are filled except F at the top of the band; the velocity vx is zero at F
because d!/dkx ! 0. (b) An electric field Ex is applied in the "x direction. The force on the elec-
trons is in the #kx direction and all electrons make transitions together in the #kx direction, mov-
ing the hole to the state E. (c) After a further interval the electrons move farther along in k space
and the hole is now at D.

E

ve

vh

je

jh

e

h
Figure 10 Motion of electrons in the conduction band and
holes in the valence band in the electric field E. The hole
and electron drift velocities are in opposite directions, but their
electric currents are in the same direction, the direction of the
electric field.
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4. (20)

We show below that the effective mass is inversely proportional to the
curvature d2!/dk2, and for the hole band this has the opposite sign to that
for an electron in the valence band. Near the top of the valence band me

is negative, so that mh is positive.

5. (21)

This comes from the equation of motion

(CGS) (22)

that applies to the missing electron when we substitute !kh for ke and vh

for ve. The equation of motion for a hole is that of a particle of
positive charge e. The positive charge is consistent with the electric
current carried by the valence band of Fig. 9: the current is carried by
the unpaired electron in the orbital G:
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which is just the current of a positive charge moving with the velocity as-
cribed to the missing electron at E. The current is shown in Fig. 10.
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constructed by inversion of the valence band in the origin. The wavevector and energy of the hole
are equal, but opposite in sign, to the wavevector and energy of the empty electron orbital in the va-
lence band. We do not show the disposition of the electron removed from the valence band at ke.
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So when the state +j is empty in a band, the band has effective wavevector k−j. 
Now the current flow in the incomplete band under the influence of a field
E:
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This shows that an incomplete band (state +j empty) behaves just like a
positive charge moving with the same velocity an electron would have in that
state. Thus the properties of all of the remaining electrons in the incomplete
band are equivalent to those of the vacant state j if the vacant state has:

a. A k-vector k−j

b. A velocity v+j

c. A positive charge +e
We call this vacant state a positive “hole” (h+)

Electrons and Holes

and



Dynamics of Electrons and Holes

But earlier we deduced that the hole velocity is the
same as that of the corresponding “missing” electron:

If this hole is accelerated in an applied electric field:

So by equating the derivatives we find:

However, note that near the top of a band the band curvature is negative,
so the effective electron mass is also negative. The corresponding hole
mass is then positive.
So the equation of motion of a “hole” in an electromagnetic 
field is:
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The corresponding equation for the electron is: Ee
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Band Effective Mass of an Electron
We can write the equation of motion of a Bloch electron in 1-D:
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Also, from the acceleration theorem:

This gives:
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The effective mass depends on the electron’s energy and thus its location
in the band.

or

With the analogy of F = ma, the band
effective mass is defined as:
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Physical Meaning of Effective Mass

For a free electron:
and

The effective mass concept is useful because it allows us to retain the
notion of a free-electron even when we have a periodic potential, as long
as we use m* to account for the effect of the lattice on the acceleration
of the electron.

m
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Here K is the wavevector measured from the zone boundary, and me denotes
the effective mass of the electron near the edge of the second band. An elec-
tron near the top of the first band has the energy

(25)

The curvature and hence the mass will be negative near the top of the first
band, but we have introduced a minus sign into (25) in order that the symbol
mh for the hole mass will have a positive value—see (20) above.

The crystal does not weigh any less if the effective mass of a carrier is less
than the free electron mass, nor is Newton’s second law violated for the crystal
taken as a whole, ions plus carriers. The important point is that an electron in a
periodic potential is accelerated relative to the lattice in an applied electric or
magnetic field as if the mass of the electron were equal to an effective mass
which we now define.

We differentiate the result (1) for the group velocity to obtain

. (26)

We know from (5) that whence

(27)

If we identify as a mass, then (27) assumes the form of Newton’s
second law. We define the effective mass m* by

(28)

It is easy to generalize this to take account of an anisotropic electron en-
ergy surface, as for electrons in Si or Ge. We introduce the components of the
reciprocal effective mass tensor

(29)

where !, " are Cartesian coordinates.

Physical Interpretation of the Effective Mass

How can an electron of mass m when put into a crystal respond to applied
fields as if the mass were m*? It is helpful to think of the process of Bragg re-
flection of electron waves in a lattice. Consider the weak interaction approxi-
mation treated in Chapter 7. Near the bottom of the lower band the orbital is
represented quite adequately by a plane wave exp(ikx) with momentum 
the wave component exp[i(k ! G)x] with momentum is small and!(k!G)
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where μ, 𝑣 are Cartesian coordinates.

It is easy to generalize this to a 3-D solid to take account of an anisotropic
electron energy surface. We would find that m* is a second-order tensor
with 9 components:



Near the bottom of a nearly-free electron band
m* is approximately constant, but it increases
dramatically near the inflection point and even
becomes negative near the zone edge.

The effective mass is inversely proportional
to the curvature of the energy band.

Physical Meaning of Effective Mass



• Metals are solids with incompletely filled energy bands

• Semiconductors and insulators have a completely filled or empty bands and 
an energy gap separating the highest filled and lowest unfilled band.  
Semiconductors have a small energy gap (Eg < 2.0 eV).

Quick quiz:  Does this mean a divalent element will always be an insulator?

Answer: In 1-D, yes, but not necessarily in 2-D or 3-D! Bands along different
directions in k-space can overlap, so that electrons can partially occupy both
of the overlapping bands and thus form a metal.

But it is true that only crystals with an even number of valence electrons in a
primitive cell can be insulators.

Metals, Insulators, and Semiconductors

162

Energy

Insulator SemimetalMetal Semiconductor Semiconductor

Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semi-
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions;
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one
band is almost filled and another band is nearly empty at absolute zero, but a pure semiconduc-
tor (such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors
shown is at a finite temperature, with carriers excited thermally. The other semiconductor is
electron-deficient because of impurities.
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Carrier Concentrations

Metals, semimetals, semiconductors
and insulators can be categorized by
their carrier concentrations at room
temperature. They can also be
differentiated by the electrical
resistivity at room temperature.
Semiconductors usually have this value
in the range of 10-2 to 109 ohm-cm,
and dependent on temperature
strongly. At absolute zero a pure,
perfect crystal of most semiconductors
will be an insulator with a resistivity
above 1014 ohm-cm.



Intrinsic Carrier Concentrations
For a semiconductor, we want to know the concentration of intrinsic
carries as function of temperature T, in terms of its band gap Eg.

The density of electron states per unit volume 
at ϵ is 

Fermi-Dirac distribution for ϵ−μ >> kBT
reduces to

The energy of an electron in the conduction band is

The concentration of electrons is The concentration of electrons in the conduction band is

(38)

which integrates to give

(39)

The problem is solved for n when ! is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fh for holes is
related to the electron distribution function fe by fh ! 1 " fe, because a hole is
the absence of an electron. We have

(40)

provided (! " ") # kBT.
If the holes near the top of the valence band behave as particles with 

effective mass mh, the density of hole states is given by

(41)

where E# is the energy at the valence band edge. Proceeding as in (38) we obtain

(42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium

relation, with the energy gap Eg ! Ec " Ev as in Fig. 18,

(43)

This useful result does not involve the Fermi level !. At 300 K the value of np
is 2.10 $ 1019 cm"6, 2.89 $ 1026 cm"6, and 6.55 $ 1012 cm"6, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with kBT.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes

np ! 4! kBT
2$!2 "3

(mcmh)3/2 exp("Eg/kBT) .

p ! #Ec
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which integrates to give 

INTRINSIC CARRIER CONCENTRATION

We want the concentration of intrinsic carriers as a function of tempera-
ture, in terms of the band gap. We do the calculation for simple parabolic band
edges. We first calculate in terms of the chemical potential ! the number of
electrons excited to the conduction band at temperature T. In semiconductor
physics ! is called the Fermi level. At the temperatures of interest we may
suppose for the conduction band of a semiconductor that " ! ! " kBT, so that
the Fermi-Dirac distribution function reduces to

(35)

This is the probability that a conduction electron orbital is occupied, in an 
approximation valid when fe # 1.

The energy of an electron in the conduction band is

(36)

where Ec is the energy at the conduction band edge, as in Fig. 18. Here 
me is the effective mass of an electron. Thus from (6.20) the density of states 
at " is

(37)De(") $ 

1
2#2! 

2me

!2  "3/2
(" ! Ec)1/2 .

"k $ Ec % !2k2/2me ,

fe # exp[(!!")/kBT] .
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Figure 17a Constant energy ellipsoids for
electrons in silicon, drawn for ml/mt $ 5.

Figure 17b Band structure of GaAs, after S. G. Louie.
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Figure 17b Band structure of GaAs, after S. G. Louie.
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INTRINSIC CARRIER CONCENTRATION

We want the concentration of intrinsic carriers as a function of tempera-
ture, in terms of the band gap. We do the calculation for simple parabolic band
edges. We first calculate in terms of the chemical potential ! the number of
electrons excited to the conduction band at temperature T. In semiconductor
physics ! is called the Fermi level. At the temperatures of interest we may
suppose for the conduction band of a semiconductor that " ! ! " kBT, so that
the Fermi-Dirac distribution function reduces to

(35)

This is the probability that a conduction electron orbital is occupied, in an 
approximation valid when fe # 1.

The energy of an electron in the conduction band is

(36)

where Ec is the energy at the conduction band edge, as in Fig. 18. Here 
me is the effective mass of an electron. Thus from (6.20) the density of states 
at " is
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fe # exp[(!!")/kBT] .
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ch08.qxd  8/13/04  4:23 PM  Page 205



Impurity Carrier Concentrations
For a doped semiconductor, we want to know the concentration of
conductive carries as function of temperature T and impurity energy levels
Ed and Ea.
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The density of hole states at ϵ is 

The concentration p of holes in the valence band is 

The product of np is constant at a given temperature.

The distribution function fh for holes is related to the electron distribution
function fe by

The concentration of electrons in the conduction band is

(38)

which integrates to give

(39)

The problem is solved for n when ! is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fh for holes is
related to the electron distribution function fe by fh ! 1 " fe, because a hole is
the absence of an electron. We have

(40)

provided (! " ") # kBT.
If the holes near the top of the valence band behave as particles with 

effective mass mh, the density of hole states is given by

(41)

where E# is the energy at the valence band edge. Proceeding as in (38) we obtain

(42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium

relation, with the energy gap Eg ! Ec " Ev as in Fig. 18,

(43)

This useful result does not involve the Fermi level !. At 300 K the value of np
is 2.10 $ 1019 cm"6, 2.89 $ 1026 cm"6, and 6.55 $ 1012 cm"6, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with kBT.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes

np ! 4! kBT
2$!2 "3

(mcmh)3/2 exp("Eg/kBT) .

p ! #Ec

"!
 Dh(")fh(")d" ! 2!mhkBT

2$!2 "3/2
 exp[(Ec" !)/kBT]

Dh(") ! 

1
2$2! 

2mh

!2  "3%2
(Ev " ")1/2 ,

 $ exp[(" " !)/kBT] ,

fh  ! 1 " 

1
exp[(" " !)/kBT] & 1

 ! 

1
exp[(! " ")/kBT] & 1

n ! 2! 

mekBT
2$!2  "3/2

 exp[(! " Ec)/kBT] .

#!

Ec

 (" " Ec)1/2 exp(""/kBT)d" ,

n ! #!

Ec

 De(")fe(")d" ! 1
2$2 !2me

!2 "3/2
 exp(!/kBT) $

206

ch08.qxd  8/13/04  4:23 PM  Page 206

The concentration of electrons in the conduction band is

(38)

which integrates to give

(39)

The problem is solved for n when ! is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fh for holes is
related to the electron distribution function fe by fh ! 1 " fe, because a hole is
the absence of an electron. We have

(40)

provided (! " ") # kBT.
If the holes near the top of the valence band behave as particles with 

effective mass mh, the density of hole states is given by

(41)

where E# is the energy at the valence band edge. Proceeding as in (38) we obtain

(42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium

relation, with the energy gap Eg ! Ec " Ev as in Fig. 18,

(43)

This useful result does not involve the Fermi level !. At 300 K the value of np
is 2.10 $ 1019 cm"6, 2.89 $ 1026 cm"6, and 6.55 $ 1012 cm"6, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with kBT.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes

np ! 4! kBT
2$!2 "3

(mcmh)3/2 exp("Eg/kBT) .

p ! #Ec

"!
 Dh(")fh(")d" ! 2!mhkBT

2$!2 "3/2
 exp[(Ec" !)/kBT]

Dh(") ! 

1
2$2! 

2mh

!2  "3%2
(Ev " ")1/2 ,

 $ exp[(" " !)/kBT] ,

fh  ! 1 " 

1
exp[(" " !)/kBT] & 1

 ! 

1
exp[(! " ")/kBT] & 1

n ! 2! 

mekBT
2$!2  "3/2

 exp[(! " Ec)/kBT] .

#!

Ec

 (" " Ec)1/2 exp(""/kBT)d" ,

n ! #!

Ec

 De(")fe(")d" ! 1
2$2 !2me

!2 "3/2
 exp(!/kBT) $

206

ch08.qxd  8/13/04  4:23 PM  Page 206

provided

We multiply together the expressions for n and p to obtain the equilibrium 
relation 

The concentration of electrons in the conduction band is

(38)

which integrates to give

(39)

The problem is solved for n when ! is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fh for holes is
related to the electron distribution function fe by fh ! 1 " fe, because a hole is
the absence of an electron. We have

(40)

provided (! " ") # kBT.
If the holes near the top of the valence band behave as particles with 

effective mass mh, the density of hole states is given by

(41)

where E# is the energy at the valence band edge. Proceeding as in (38) we obtain

(42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium

relation, with the energy gap Eg ! Ec " Ev as in Fig. 18,

(43)

This useful result does not involve the Fermi level !. At 300 K the value of np
is 2.10 $ 1019 cm"6, 2.89 $ 1026 cm"6, and 6.55 $ 1012 cm"6, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with kBT.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes

np ! 4! kBT
2$!2 "3

(mcmh)3/2 exp("Eg/kBT) .

p ! #Ec

"!
 Dh(")fh(")d" ! 2!mhkBT

2$!2 "3/2
 exp[(Ec" !)/kBT]

Dh(") ! 

1
2$2! 

2mh

!2  "3%2
(Ev " ")1/2 ,

 $ exp[(" " !)/kBT] ,

fh  ! 1 " 

1
exp[(" " !)/kBT] & 1

 ! 

1
exp[(! " ")/kBT] & 1

n ! 2! 

mekBT
2$!2  "3/2

 exp[(! " Ec)/kBT] .

#!

Ec

 (" " Ec)1/2 exp(""/kBT)d" ,

n ! #!

Ec

 De(")fe(")d" ! 1
2$2 !2me

!2 "3/2
 exp(!/kBT) $

206

ch08.qxd  8/13/04  4:23 PM  Page 206

The concentration of electrons in the conduction band is

(38)

which integrates to give

(39)

The problem is solved for n when ! is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fh for holes is
related to the electron distribution function fe by fh ! 1 " fe, because a hole is
the absence of an electron. We have

(40)

provided (! " ") # kBT.
If the holes near the top of the valence band behave as particles with 

effective mass mh, the density of hole states is given by

(41)

where E# is the energy at the valence band edge. Proceeding as in (38) we obtain

(42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium

relation, with the energy gap Eg ! Ec " Ev as in Fig. 18,

(43)

This useful result does not involve the Fermi level !. At 300 K the value of np
is 2.10 $ 1019 cm"6, 2.89 $ 1026 cm"6, and 6.55 $ 1012 cm"6, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with kBT.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes

np ! 4! kBT
2$!2 "3

(mcmh)3/2 exp("Eg/kBT) .

p ! #Ec

"!
 Dh(")fh(")d" ! 2!mhkBT

2$!2 "3/2
 exp[(Ec" !)/kBT]

Dh(") ! 

1
2$2! 

2mh

!2  "3%2
(Ev " ")1/2 ,

 $ exp[(" " !)/kBT] ,

fh  ! 1 " 

1
exp[(" " !)/kBT] & 1

 ! 

1
exp[(! " ")/kBT] & 1

n ! 2! 

mekBT
2$!2  "3/2

 exp[(! " Ec)/kBT] .

#!

Ec

 (" " Ec)1/2 exp(""/kBT)d" ,

n ! #!

Ec

 De(")fe(")d" ! 1
2$2 !2me

!2 "3/2
 exp(!/kBT) $

206

ch08.qxd  8/13/04  4:23 PM  Page 206

The concentration of electrons in the conduction band is

(38)

which integrates to give

(39)

The problem is solved for n when ! is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fh for holes is
related to the electron distribution function fe by fh ! 1 " fe, because a hole is
the absence of an electron. We have

(40)

provided (! " ") # kBT.
If the holes near the top of the valence band behave as particles with 

effective mass mh, the density of hole states is given by

(41)

where E# is the energy at the valence band edge. Proceeding as in (38) we obtain

(42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium

relation, with the energy gap Eg ! Ec " Ev as in Fig. 18,

(43)

This useful result does not involve the Fermi level !. At 300 K the value of np
is 2.10 $ 1019 cm"6, 2.89 $ 1026 cm"6, and 6.55 $ 1012 cm"6, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with kBT.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes

np ! 4! kBT
2$!2 "3

(mcmh)3/2 exp("Eg/kBT) .

p ! #Ec

"!
 Dh(")fh(")d" ! 2!mhkBT

2$!2 "3/2
 exp[(Ec" !)/kBT]

Dh(") ! 

1
2$2! 

2mh

!2  "3%2
(Ev " ")1/2 ,

 $ exp[(" " !)/kBT] ,

fh  ! 1 " 

1
exp[(" " !)/kBT] & 1

 ! 

1
exp[(! " ")/kBT] & 1

n ! 2! 

mekBT
2$!2  "3/2

 exp[(! " Ec)/kBT] .

#!

Ec

 (" " Ec)1/2 exp(""/kBT)d" ,

n ! #!

Ec

 De(")fe(")d" ! 1
2$2 !2me

!2 "3/2
 exp(!/kBT) $

206

ch08.qxd  8/13/04  4:23 PM  Page 206

is maintained by black-body photon radiation at temperature T. The photons
generate electron-hole pairs at a rate A(T), while B(T)np is the rate of the re-
combination reaction e ! h " photon. Then

. (44)

In equilibrium dn/dt " 0, dp/dt " 0, whence np " A(T)/B(T).
Because the product of the electron and hole concentrations is a constant

independent of impurity concentration at a given temperature, the introduction
of a small proportion of a suitable impurity to increase n, say, must decrease p.
This result is important in practice—we can reduce the total carrier concentra-
tion n ! p in an impure crystal, sometimes enormously, by the controlled intro-
duction of suitable impurities. Such a reduction is called compensation.

In an intrinsic semiconductor the number of electrons is equal to the
number of holes, because the thermal excitation of an electron leaves behind a
hole in the valence band. Thus from (43) we have, letting the subscript i de-
note intrinsic and Eg " Ec # Ev,

(45)

The intrinsic carrier concentration depends exponentially on Eg/2kBT,
where Eg is the energy gap. We set (39) equal to (42) to obtain, for the Fermi
level as measured from the top of the valence band,

(46)

(47)! " 

1
2 Eg ! 

3
4 kBT ln (mh/me) .

exp(2!/kBT) " (mh/me)3/2 exp(Eg/kBT) ;

ni " pi " 2! kBT
2"!2 "3/2

(memh)3/4 exp(# Eg/2kBT) .

dn/dt " A(T) # B(T)np " dp/dt
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Figure 18 Energy scale for statistical calcula-
tions. The Fermi distribution function is shown
on the same scale, for a temperature kBT $ Eg.
The Fermi level ! is taken to lie well within the
band gap, as for an intrinsic semiconductor. If 
# " !, then f " 

1
2.
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For intrinsic carriers, ni and pi,

To obtain the Fermi level μ, we start from ni = pi, so

then,
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If mh = me, then μ = Eg/2 and the Fermi level is in the middle of the
forbidden gap.
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The concentration of electrons in the conduction band is

(38)

which integrates to give

(39)

The problem is solved for n when ! is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function fh for holes is
related to the electron distribution function fe by fh ! 1 " fe, because a hole is
the absence of an electron. We have

(40)

provided (! " ") # kBT.
If the holes near the top of the valence band behave as particles with 

effective mass mh, the density of hole states is given by

(41)

where E# is the energy at the valence band edge. Proceeding as in (38) we obtain

(42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium

relation, with the energy gap Eg ! Ec " Ev as in Fig. 18,

(43)

This useful result does not involve the Fermi level !. At 300 K the value of np
is 2.10 $ 1019 cm"6, 2.89 $ 1026 cm"6, and 6.55 $ 1012 cm"6, for the actual
band structures of Si, Ge, and GaAs, respectively.

We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with kBT.

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes
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is maintained by black-body photon radiation at temperature T. The photons
generate electron-hole pairs at a rate A(T), while B(T)np is the rate of the re-
combination reaction e ! h " photon. Then

. (44)

In equilibrium dn/dt " 0, dp/dt " 0, whence np " A(T)/B(T).
Because the product of the electron and hole concentrations is a constant

independent of impurity concentration at a given temperature, the introduction
of a small proportion of a suitable impurity to increase n, say, must decrease p.
This result is important in practice—we can reduce the total carrier concentra-
tion n ! p in an impure crystal, sometimes enormously, by the controlled intro-
duction of suitable impurities. Such a reduction is called compensation.

In an intrinsic semiconductor the number of electrons is equal to the
number of holes, because the thermal excitation of an electron leaves behind a
hole in the valence band. Thus from (43) we have, letting the subscript i de-
note intrinsic and Eg " Ec # Ev,

(45)

The intrinsic carrier concentration depends exponentially on Eg/2kBT,
where Eg is the energy gap. We set (39) equal to (42) to obtain, for the Fermi
level as measured from the top of the valence band,

(46)

(47)! " 

1
2 Eg ! 

3
4 kBT ln (mh/me) .

exp(2!/kBT) " (mh/me)3/2 exp(Eg/kBT) ;

ni " pi " 2! kBT
2"!2 "3/2

(memh)3/4 exp(# Eg/2kBT) .

dn/dt " A(T) # B(T)np " dp/dt
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Impurity Conductivity
Certain impurities and imperfections drastically affect the electrical
properties of a semiconductor. The addition of boron to silicon in the
proportion of 1 boron atom to 105 silicon atoms increases the
conductivity of pure at room temperature by a factor of 103. The
deliberate addition of impurities to a semiconductor is called doping.

We consider the effect of impurities in silicon and germanium. These
elements crystallize in the diamond structure. Each atom forms four
covalent bonds, one with each of its nearest neighbors, corresponding to
the chemical valence four. If an impurity atom of valence five, such as
phosphorus, arsenic, or antimony, is substituted in the lattice in place of
a normal atom, there will be one valence electron from the impurity
atom left over after the four covalent bonds are established with the
nearest neighbors, that is, after the impurity atom has been
accommodated in the structure with as little disturbance as possible.
Impurity atoms that can give up an electron are called donors.



Donor States
The impurity atoms of valence five such as P, As, and Sb are called donors
because they donate electrons to the conduction band in order to complete
the covalent bonds with neighbor atoms, leaving electrons in the band.

!"#$%!&!'( )%' *)++', !"#"$% )-, &''()*"$%. %'(#'*&!/'+01 2 ,3-3% !- ) 4!
+)&&!*' !( *%')&',. 53% '6)"#+'. 78'- ) /)+'-*'953$% 4! )&3" !( %'#+)*', :0 )
/)+'-*'95!/' )&3" ($*8 )( ;. 2( 3% 4:1 <8' '+'*&%3-!* (&%$*&$%' 35 &8' 3$&'%9
"3(& (8'++ 35 &8'(' !"#$%!&!'( !( % =) > !-(&'), 35 &8' >% =>) = 4! *3-5!?$%)&!3-1
<3 ),3#& &8' &'&%)8',%)+ :3-,!-? (&%$*&$%' 35 )- %) > 80:%!, !- &8' +)&&!*'.
3-+0 &8' % =) = '+'*&%3-( 35 &8' /)+'-*'95!/' )&3" )%' -'*'(()%0@ &8' '6*'((
'+'*&%3- !- &8' ) (8'++ 8)( -3 #+)*' !- &8' %) > 80:%!, :3-,1 <8!( '+'*&%3-
*)- :' !")?!-', )( 7')A+0 :3$-, &3 &8' #3(!&!/'+0 *8)%?', )-, &'&%)8',9
%)++0 :3-,', ,3-3% *3%'. 78!*8 8)( %'#+)*', ) 4! )&3" !- &8' +)&&!*'
BC!?1 D=1E)F1

2 /)+'-*'95!/' ,3-3% !"#$%!&0 !- &8' 4! +)&&!*' *)- :' #!*&$%',. &3 )
?33, )##%36!")&!3-. )( ) #3(!&!/'+0 *8)%?', "3-3/)+'-& *3%'. &3 78!*8 3-'
'+'*&%3- !( :3$-,1 <8' '+'*&%3- *)- :'*3"' ,!((3*!)&', )-, *)- &8'- "3/'
GG5%''+0HH &8%3$?8 &8' +)&&!*'@ !1'1. 3- !3-!I)&!3-. &8!( '+'*&%3- 7!++ :' '6*!&',
5%3" &8' !"#$%!&0 !-&3 &8' *3-,$*&!3- :)-,1 <8' ,3-3% !"#$%!&0 *)- :' ,'9
(*%!:', )( ) 80,%3?'-9+!A' *'-&'%. !- 78!*8 &8' J3$+3": )&&%)*&!3- :'&7''-
&8' *3%' )-, &8' /)+'-*' '+'*&%3- !( (*%''-', :0 &8' #%'('-*' 35 4! '+'*&%3-(
!- &8' /!*!-!&01

<3 '(&!")&' &8' '6*!&)&!3- )-, !3-!I)&!3- '-'%?0 35 &8' '6&%) #83(9
#83%$( '+'*&%3- BC!?1 D=1E)F. 3-' *)- )##%36!")&' &8' (*%''-!-? 'K'*& 35 &8'
($%%3$-,!-? 4! :0 !-('%&!-? &8' ,!'+'*&%!* *3-(&)-& 35 4! B!4!LDD1MF !-&3 &8'
'6#%'((!3- 53% &8' '-'%?0 +'/'+( 35 &8' 80,%3?'- )&3"1 <8' '-'%?0 +'/'+( 53%
&8' N0,:'%? ('%!'( 35 &8' 80,%3?'- )&3" )%'

+O# !
,' (

P

="P " !Q!-#=
D

#=
"D=!DP#

D=1> R3#!-? 35 4'"!*3-,$*&3%( P=S

!"#$ %&$'()*$ 4*8'")&!* %'#%'('-&)&!3- 35 &8' 'K'*& 35 ) ,3-3% B(F )-, )- )**'#&3% B*F !- )
(!+!*3- +)&&!*'1 <8' /)+'-*'95!/' #83(#83%$( )&3" !( !-*3%#3%)&', !- &8' +)&&!*' )& &8' (!&' 35 )
(!+!*3- )&3"1 <8' 5!5&8 /)+'-*' '+'*&%3- 35 &8' #83(#83%$( )&3" !( -3& %'T$!%', 53% :3-,!-?
)-, !( &8$( 3-+0 7')A+0 :3$-,1 <8' :!-,!-? '-'%?0 *)- :' '(&!")&', :0 &%')&!-? &8' (0(&'"
)( ) 80,%3?'- )&3" '":',,', !- ) ,!'+'*&%!* "',!$"1 <8' *)(' 35 )- )**'#&3% B*F *)- :' ,'9
(*%!:', (!"!+)%+0U &8' /)+'-*'9&8%'' :3%3- )**'#&( )- '+'*&%3- 5%3" &8' (!+!*3- +)&&!*'1 <8' 83+'
&8)& !( &8'%':0 *%')&', !- &8' /)+'-*' :)-, 3%:!&( )%3$-, &8' -'?)&!/'+0 *8)%?', !"#$%!&01
<8' +)&&!*' *3-(&)-& )-, &8' %),!$( 35 &8' ,'5'*& *'-&'% )%' -3& ,%)7- &3 (*)+'1 V- %')+!&0 &8'
5!%(& W38% %),!$( 35 &8' GG!"#$%!&0 3%:!&HH !( ):3$& &'- &!"'( )( +)%?' )( &8' +)&&!*' #)%)"'&'%

!"# $%& '() !*+ ,)-),. '() /%"/0!'/%" )")&12 /3 +456 )75 8%& '() 9 #%"%&.
'() :!33 ") %$ '() $&)) ),);'&%" :<3' =) &)>,!;)# =2 '() )$$);'/-) :!33
"!
!*?54 ") %$ ! 3/,/;%" ;%"#<;'/%" ),);'&%". !"# '() #/),);'&/; ;%"3'!"' !?

%$ -!;<<: =2 !? !@/5 A -!,<) $%& '() /%"/0!'/%" )")&12 ## %$ '() #%"%& %$
!4? :)7 &)3<,'35 B() )")&12 ,)-), #C %$ '() #%"%& ),);'&%" /" '() =%<"#
3'!') 3(%<,# '(<3 ,/) !=%<' 4? :)7 =),%D '() ;%"#<;'/%" =!"# )#1) #E 5 A
3'/,, 3:!,,)& -!,<) /3 %='!/")# $%& 1)&:!"/<:5 F)&). !G)*+H5I !"#
"!
!
!?5+J ")5 A" )3'/:!') %$ "#E # #C$!6 :)7 /3 %='!/")#5 B() 3/'<!'/%"

/3 #)>/;')# /" ! =!"#3'&<;'<&) 3;():) /" 8/15 +J5K. D()&) %",2 '() 1&%<"#
3'!') %$ '() #%"%& /3 #&!D"5 L)'D))" '(/3 1&%<"# 3'!') !"# '() ;%"#<;'/%"
=!"# )#1) !&) ! 3)&/)3 %$ )M;/')# 3'!')3 N!$+ /" O+J5+PQR. D(%3) 3>!;/"1 #)S
;&)!3)3 D/'( /";&)!3/"1 )")&12. !"# D(/;( $/"!,,2 T%/" '() ;%"'/"<<: %$ '()
;%"#<;'/%" =!"#5 B() 3/'<!'/%" /3 -)&2 3/:/,!& '% '(!' %$ '() F !'%:. D()&)
'() ;%"#<;'/%" =!"# ;%"'/"<<: ;%&&)3>%"#3 '% '() <"=%<"# 3'!')3 !=%-)
'() -!;<<: ,)-),5 B() )")&12 %$ '() )M;/')# 3'!')3 ;!" =) #)')&:/")#. $%& )MS
!:>,). $&%: %>'/;!, 3>);'&!5 8/1<&) +J5I 3(%D3 !" !=3%&>'/%" 3>);'&<: %$
'() @= #%"%& /" G)5 B() =!"#3 =),%D U56 :)7 ;%&&)3>%"# '% )M;/'!'/%"3
$&%: '() 1&%<"# 3'!') '% (/1()&. )M;/')# 3'!')35 B() 3>);'&<: /3 !;'<!,,2
:%&) ;%:>,/;!')# '(!" D%<,# =) )M>);')# $&%: '() 3/:>,) (2#&%1)"/; :%#S
),V '(/3 /3 =);!<3) '() ;&23'!, $/),# ,/$'3 '() >!&'/!, #)1)")&!;2 %$ '() (2#&%S
1)"S,/W) 3'!')35 A=%-) ! >(%'%" )")&12 %$ U56 :)7. '() ),);'&%"3 !&) )M;/')#
'% '() ;%"'/"<<: %$ '() ;%"#<;'/%" =!"#5

A3 ;!" =) 3))" $&%: '() )M>)&/:)"'!, )M!:>,) /" 8/15 +J5I. '() 3/:>,)
#)3;&/>'/%" %$ '() #%"%& =2 ! (2#&%1)"/; :%#), !,,%D3 %") '% )3'/:!') '()
%&#)& %$ :!1"/'<#) %$ '() /%"/0!'/%" )")&12 ##5 X/'(/" '(/3 :%#), !,, #%"%&
/:><&/'/)3. 3<;( !3 9. A3 !"# @=. 3(%<,# (!-) '() 3!:) /%"/0!'/%" )")&12 ##
D()" >&)3)"' /" '() 3!:) 3):/;%"#<;'%& (%3'5 B() )M>)&/:)"'!, -!,<)3 %$
## /" B!=,) +J5H 3(%D. (%D)-)&. '(!' '() -!,<)3 -!&2 3%:)D(!' $&%: #%"%&
'% #%"%&5

P4? +J @):/;%"#<;'%&3

!"#$ %&$'$ Y<!,/'!'/-) >%3/'/%" %$ '() 1&%<"# 3'!') ,)-),3 %$ #%"%&3 !"# !;;)>'%&3 &),!'/-) '%
'() :/"/:<: %$ '() ;%"#<;'/%" =!"# #E !"# '() :!M/:<: %$ '() -!,)";) =!"# #75 B()
Z<!"'/'/)3 ## !"# #! !&) '() /%"/0!'/%" )")&1/)3 %$ '() #%"%& !"# !;;)>'%&. &)3>);'/-),2

The extra electron moves in the coulomb potential e/ϵr of the impurity ion,
where ϵ in a covalent crystal is the static dielectric constant of the medium.



and

Ed	is	the	ionization	energy	and	ad the	Bohr	radius	of	the	donor.	

Ed = 5 meV and ad =  80 Å for Ge; 

Ed = 20 meV  and ad =  30 Å for Si. 

We estimate the ionization energy of the donor impurity. The Bohr theory
of the hydrogen atom may be modified to take into account the dielectric
constant of the medium and the effective mass of an electron in the
periodic potential of the crystal. The ionization energy of atomic hydrogen
is −e4m/2ℏ2 . In the semiconductor with dielectric constant ϵ we replace e2

by e2/ϵ and m by the effective mass me to obtain

We estimate the ionization energy of the donor impurity. The Bohr theory
of the hydrogen atom may be modified to take into account the dielectric 
constant of the medium and the effective mass of an electron in the periodic
potential of the crystal. The ionization energy of atomic hydrogen is 
in CGS and in SI.

In the semiconductor with dielectric constant ! we replace e2 by e2/! and
m by the effective mass me to obtain

(51)

as the donor ionization energy of the semiconductor.
The Bohr radius of the ground state of hydrogen is in CGS or

in SI. Thus the Bohr radius of the donor is

(52)

The application of impurity state theory to germanium and silicon is com-
plicated by the anisotropic effective mass of the conduction electrons. But the
dielectric constant has the more important effect on the donor energy because
it enters as the square, whereas the effective mass enters only as the first power.

To obtain a general impression of the impurity levels we use me 0.1 m
for electrons in germanium and me 0.2 m in silicon. The static dielectric
constant is given in Table 4. The ionization energy of the free hydrogen atom is
13.6 eV. For germanium the donor ionization energy Ed on our model is 5 meV,
reduced with respect to hydrogen by the factor me/m!2 ! 4 " 10#4. The 
corresponding result for silicon is 20 meV. Calculations using the correct
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Figure 19 Charges associated with an arsenic impurity atom in silicon. Arsenic has five valence
electrons, but silicon has only four valence electrons. Thus four electrons on the arsenic form tetra-
hedral covalent bonds similar to silicon, and the fifth electron is available for conduction. The 
arsenic atom is called a donor because when ionized it donates an electron to the conduction band.
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To obtain a general impression of the impurity levels we use me ≃ 0.1 m for
electrons in germanium and me ≃ 0.2 m in silicon. The static dielectric
constant ϵ is 15.8 for Ge and 11.7 for Si. Then, we obtain



Acceptor States
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Trivalent impurities such as B, Al, Ga, and In are called acceptors because
they accept electrons from the valence band in order to complete the
covalent bonds with neighbor atoms, leaving holes in the band.



Carrier Mobility
The mobility is the magnitude of the drift velocity of a charge carrier per
unit electric field:

The electrical conductivity is the sum of the electron and hole
contributions:

The drift velocity of a charge q was found to be v = q𝜏E/m, whence 

If mh ! me, then and the Fermi level is in the middle of the forbid-
den gap.

Intrinsic Mobility

The mobility is the magnitude of the drift velocity of a charge carrier per
unit electric field:

(48)

The mobility is defined to be positive for both electrons and holes, although
their drift velocities are opposite in a given field. By writing !e or !h with 
subscripts for the electron or hole mobility we can avoid any confusion be-
tween ! as the chemical potential and as the mobility.

The electrical conductivity is the sum of the electron and hole contributions:

(49)

where n and p are the concentrations of electrons and holes. In Chapter 6 the
drift velocity of a charge q was found to be v ! q"E/m, whence

(50)

where " is the collision time.
The mobilities depend on temperature as a modest power law. The tem-

perature dependence of the conductivity in the intrinsic region will be 
dominated by the exponential dependence exp("Eg/2kBT) of the carrier con-
centration, Eq. (45).

Table 3 gives experimental values of the mobility at room temperature.
The mobility in SI units is expressed in m2/V-s and is 10"4 of the mobility in
practical units. For most substances the values quoted are limited by the scat-
tering of carriers by thermal phonons. The hole mobilities typically are smaller
than the electron mobilities because of the occurrence of band degeneracy at
the valence band edge at the zone center, thereby making possible interband
scattering processes that reduce the mobility considerably.

!e ! e"e/me ;   !h ! e"h/mh ,

# ! (ne!e # pe!h) ,

! ! !v !/E .

! ! 

1
2 Eg
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Table 3  Carrier mobilities at room temperature, in cm2/V-s

Crystal Electrons Holes Crystal Electrons Holes

Diamond 1800 1200 GaAs 8000 300
Si 1350 480 GaSb 5000 1000
Ge 3600 1800 PbS 550 600
InSb 800 450 PbSe 1020 930
InAs 30000 450 PbTe 2500 1000
InP 4500 100 AgCl 50 —
AlAs 280 — KBr (100 K) 100 —
AlSb 900 400 SiC 100 10–20
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Thermoelectric Effect
The thermoelectric effect is the direct conversion of temperature differences
to electric voltage and vice versa via a thermocouple. The term
"thermoelectric effect" encompasses three separately identified effects:
the Seebeck effect, Peltier effect, and Thomson effect. The Seebeck and
Peltier effects are different manifestations of the same physical process;
textbooks may refer to this process as the Peltier–Seebeck effect.

The charge flux is, assuming only electrons involved,

Then the energy flux due to the electrons is

each electron carries energy

,        for electrons

,        for holes

The Peltier coefficient ⫪ is defined by jU = ⫪jq; or the energy carried per unit
charge. So,

where Ec is the energy at the conduction band edge. We refer the energy to
the Fermi level because different conductors in contact have the same Fermi
level. The energy flux that accompanies the charge flux is

(55)

The Peltier coefficient ! is defined by jU " !jq; or the energy carried
per unit charge. For electrons,

(56)

and is negative because the energy flux is opposite to the charge flux. For
holes

, (57)

where Ev is the energy at the valence band edge. Thus

(58)

and is positive. Equations (56) and (58) are the result of our simple drift veloc-
ity theory; a treatment by the Boltzmann transport equation gives minor nu-
merical differences.2

The absolute thermoelectric power Q is defined from the open circuit
electric field created by a temperature gradient:

(59)

The Peltier coefficient ! is related to the thermoelectric power Q by

(60)

This is the famous Kelvin relation of irreversible thermodynamics. A measure-
ment of the sign of the voltage across a semiconductor specimen, one end of
which is heated, is a rough and ready way to tell if the specimen is n type or p
type (Fig. 23).

SEMIMETALS

In semimetals the conduction band edge is very slightly lower in energy
than the valence band edge. A small overlap in energy of the conduction and
valence bands leads to small concentration of holes in the valence band and of
electrons in the conduction band (Table 7). Three of the semimetals, arsenic,
antimony, and bismuth, are in group V of the periodic table.

Their atoms associate in pairs in the crystal lattice, with two ions and ten
valence electrons per primitive cell. The even number of valence electrons

! " QT .

E " Q grad T .

!h " (! # Ev $ 

3
2kBT)/e

jq " pe!hE ;   jU " p(! # Ev $ 

3
2kBT)!hE

!e " #(Ec # ! $ 

3
2 kBT)/e

jU " n(Ec # ! $ 

3
2 kBT)(#!e)E .

8  Semiconductor Crystals 215

2A simple discussion of Boltzmann transport theory is given in Appendix F.
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with here Nd is the concentration of donors. To obtain
(53) we apply the laws of chemical equilibria to the concentration ratio

and then set Identical results hold for acceptors,
under the assumption of no donor atoms.

If the donor and acceptor concentrations are comparable, affairs are com-
plicated and the equations are solved by numerical methods. However, the law
of mass action (43) requires the np product to be constant at a given tempera-
ture. An excess of donors will increase the electron concentration and de-
crease the hole concentration; the sum n ! p will increase. The conductivity
will increase as n ! p if the mobilities are equal, as in Fig. 22.

THERMOELECTRIC EFFECTS

Consider a semiconductor maintained at a constant temperature while an
electric field drives through it an electric current density jq. If the current is
carried only by electrons, the charge flux is

(54)

where !e is the electron mobility. The average energy transported by an elec-
tron is referred to the Fermi level !,

(Ec " !) ! 

3
2 kBT ,

jq # n("e)("!e)E # ne!eE ,

[Nd
!] # [e] # n.[e][Nd

!]/[Nd],

n0 ! 2(mekBT/2""2)3/2;
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Figure 22 Electrical conductivity and hole concentration p calculated as a function of electron
concentration n for a semiconductor at a temperature such that np # 1020 cm"6. The conductivity
is symmetrical about n # 1010 cm"3. For n $ 1010, the specimen is n type; for n % 1010, it is p type.
We have taken !e # !h, for the mobilities.
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where !e is the electron mobility. The average energy transported by an elec-
tron is referred to the Fermi level !,

(Ec " !) ! 

3
2 kBT ,

jq # n("e)("!e)E # ne!eE ,

[Nd
!] # [e] # n.[e][Nd

!]/[Nd],

n0 ! 2(mekBT/2""2)3/2;
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Figure 22 Electrical conductivity and hole concentration p calculated as a function of electron
concentration n for a semiconductor at a temperature such that np # 1020 cm"6. The conductivity
is symmetrical about n # 1010 cm"3. For n $ 1010, the specimen is n type; for n % 1010, it is p type.
We have taken !e # !h, for the mobilities.
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where μe is the electron mobility. 



temperature-sensing thermocouple thermoelectric cooler

Applications of Thermoelectric Effect

K-type thermocouple (chromel-alumel) in
the standard thermocouple measurement
configuration. The measured voltage V can
be used to calculate temperature Tsense,
provided that temperature Tref is known.

where S is the Seebeck coefficient (also known as thermopower).



Bloch oscillations 
The one-dimensional equation of motion for an electron with wave vector
k in a constant electric field E is:

Suppose the dispersion relation for a given band is
The group velocity v of the electron is given by

and the electron position x can be computed as a function of time:

Bloch oscillations are not routinely observed because the electrons in a
periodic system undergo collisions with ions in the lattice much too
frequently, on the time scale of t (»10-14 s).

This shows that the electron oscillates in real space. The angular
frequency of the oscillations is given by
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= −(ne)-1.

The sign of RH gives the type of carrier.

To separately determine the carrier concentration n and the mobility μ
appearing in the conductivity σ = neμ, one measures both the conductivity
and the Hall effect. The Lorentz force on an electron moving in the x
direction with velocity vx is:

and Hall coefficient (RH) is defined by 

(SI)

The quantity defined by

(54)

is called the Hall coefficient. To evaluate it on our simple model we use jx !
ne2!Ex/m and obtain

(CGS) (55)

(SI)

This is negative for free electrons, for e is positive by definition.

RH ! " 1
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Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular
cross-section is placed in a magnetic field Bz, as in (a). An electric field Ex applied across the end
electrodes causes an electric current density jx to flow down the rod. The drift velocity of the
negatively-charged electrons immediately after the electric field is applied as shown in (b). The
deflection in the "y direction is caused by the magnetic field. Electrons accumulate on one face
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans-
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field.
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Problems
1.

2.

Impurity orbits. Indium antimonide has Eg = 0.23 eV; dielectric constant ϵ
= 18; electron effective mass me = 0.015 m. Calculate (a) the donor
ionization energy; (b) the radius of the ground state orbit. (c) At what
minimum donor concentration will appreciable overlap effects between
the orbits of adjacent impurity atoms occur? This overlap tends to
produce an impurity band—a band of energy levels which permit
conductivity presumably by a hopping mechanism in which electrons
move from one impurity site to a neighboring ionized impurity site.

Hall effect with two carrier types. Assuming concentration n, p; relaxation
times 𝜏e, 𝜏h; and masses me, mh, show that the Hall coefficient in the drift
velocity approximation is

where b = μe/μh is the mobility ratio. In the derivation neglect terms of
order B2. In SI we drop the c. Hint: In the presence of a longitudinal
electric field, find the transverse electric field such that the transverse
current vanishes. The algebra may seem tedious, but the result is worth
the trouble. Neglect (ωc𝜏)2 in comparison with ωc𝜏.

• The smaller the energy gap, the smaller is the effective mass |m*| near the
gap.

• A crystal with one hole has one empty electron state in an otherwise filled
band. The properties of the hole are those of the N ! 1 electrons in this
band.
(a) If the electron is missing from the state of wavevector ke, then the
wavevector of the hole is kh " !ke.
(b) The rate of change of kh in an applied field requires the assignment of a
positive charge to the hole: eh " e " !ee.
(c) If ve is the velocity an electron would have in the state ke, then the veloc-
ity to be ascribed to the hole of wavevector kh " ! ke is vh " ve.
(d) The energy of the hole referred to zero for a filled band is positive and is
!h(kh)" !!(ke).
(e) The effective mass of a hole is opposite to the effective mass of an elec-
tron at the same point on the energy band: mh " !me.

Problems

1. Impurity orbits. Indium antimonide has Eg " 0.23 eV; dielectric constant ! " 18;
electron effective mass me " 0.015 m. Calculate (a) the donor ionization energy; 
(b) the radius of the ground state orbit. (c) At what minimum donor concentration
will appreciable overlap effects between the orbits of adjacent impurity atoms
occur? This overlap tends to produce an impurity band—a band of energy levels
which permit conductivity presumably by a hopping mechanism in which electrons
move from one impurity site to a neighboring ionized impurity site.

2. Ionization of donors. In a particular semiconductor there are 1013 donors/cm3

with an ionization energy Ed of 1 meV and an effective mass 0.01 m. (a) Estimate the
concentration of conduction electrons at 4 K. (b) What is the value of the Hall coeff-
icent? Assume no acceptor atoms are present and that Eg # kBT.

3. Hall effect with two carrier types. Assuming concentration n, p; relaxation times
"e, "h; and masses me, mh, show that the Hall coefficient in the drift velocity approxi-
mation is

(CGS)

where b " #e/#h is the mobility ratio. In the derivation neglect terms of order B2. In
SI we drop the c. Hint: In the presence of a longitudinal electric field, find the
transverse electric field such that the transverse current vanishes. The algebra may
seem tedious, but the result is worth the trouble. Use (6.64), but for two carrier
types; neglect ($c")2 in comparison with $c".

RH " 

1
ec ! 

p ! nb2

(p $ nb)2 ,
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A semiconductor with a band gap energy Eg of 1eV and equal hole and
electron effective masses me* = mh* = m0 (m0 is free electron mass) is p-
doped with an acceptor concentration of p = 10-18 cm-3. The acceptor
energy level is located 0.2 eV above the valence band edge of the
material.
a) Show that intrinsic conduction in this material is negligible at 300 K.
b) Calculate the conductivity σ of the material at room temperature (300

K), given a hole mobility of μp = 100 cm2/Vs at 300 K.
c) Plot the logarithm of the hole concentration, ln p, versus reciprocal

temperature 1/T for the temperature range 100 to 1000 K.

3.


