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Energy Band Gap in a Periodic Potential

Recall the electrostatic potential energy in a crystalline solid along a line
passing through a line of atoms:
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Along a line parallel to this but running between atoms, the divergences
of the periodic potential energy are softened.

A simple 1D model that captures the periodicity of such a potential is:
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Electron Wavefunctions in a Periodic Potential

Consider the following cases:

U, =0

U, #0
k<<Z

n’k’

Wavefunctions are plane waves o)
and energy bands are parabolic: ¥ = Ae E = o

Electrons wavelengths much larger than a, so wavefunctions and
energy bands are nearly the same as above

Electrons wavelengths approach a, so waves begin to be strongly
back-scattered :

v, = A pikon 4 p =itke-on) B< A

Electrons waves are strongly back-scattered (Bragg scattering) so
standing waves are formed:

v, = C[ piU—an) 4 e—i(kx—a)t)] A[ o 4 e—ikx]e—iwt
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Bloch Theorem and Wavefunctions

Bloch theorem is one of the most important formal results in all of solid
state physics because it tells us the mathematical form of an electron

wavefunction in the presence of a periodic potential energy.

In independent-electron approximation, the time-independent
Schrodinger equation (SE) for an electron in a periodic potential is:

{—2V2 +U(77)}//:Ew
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where the potential energy is invariant under a lattice translation vector T :
Ulr+T)=U(r) and T=ua+vb+wc

Bloch showed that the solutions to the SE are the product of a plane
wave and a function with the periodicity of the lattice:

Y, lr) =ulre*r and  u(r+T) = ur)




Bloch Wavefunctions

v (F)=u (F)e"

This result gives evidence to support the nearly-free electron approximation,
in which the periodic potential is assumed to have a very small effect on the
plane-wave character of a free electron wavefunction. It also explains why
the free-electron gas model is so successful for the simple metals!




Band Gap

The band gap is the difference in energy between

the lowest point of the conduction band and the
highest point of the valence band. The lowest

Vacant conduction band

Forbidden band

Energy

point in the conduction band is called the

conduction band edge; the highest point in the Filled valence band

valence band is called the valence band edge.

Table 1 Energy gap between the valence and conduction bands

(i = indirect gap; d = direct gap)

Eg, eV Eg, eV
Crystal Gap 0K 300 K Crystal Gap 0K 300 K
Diamond i 5.4 SiC(hex) i 3.0 —
Si i 1.17 1.11 Te d 0.33 —
Ge i 0.744  0.66 HgTe" d —0.30
aSn d 0.00 0.00 PbS d 0.286 0.34-0.37
InSb d 0.23 0.17 PbSe i 0.165 0.27
InAs d 0.43 0.36 PbTe i 0.190 0.29
InP d 1.42 1.27 CdS d 2.582 2.42
GaP i 2.32 2.25 CdSe d 1.840 1.74
GaAs d 1.52 1.43 CdTe d 1.607 1.44
GaSb d 0.81 0.68 SnTe d 0.3 0.18
AlSb i 1.65 1.6 Cu,0 d 2.172 —

“HgTe is a semimetal; the bands overlap.



Direct and Indirect Band Gaps

CRYSTAL WITH DIRECT GAP CRYSTAL WITH INDIRECT GAP Ba nd ga pS can be measured by
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Equations of Motion

The propagation speed of an electron wavepacket in a periodic crystal can
be calculated from the energy band along that direction in reciprocal space:

¢ dk nodk

The work e done on the electron by the electric field E in the time interval
ot is

electron velocity: (1-D) y =92 _LdE  (3p) y (k)= A1V,e(K)

o€ = —ekv, 0t , and since  Se = (de/dk)5k = hv, ok |

we have 6k = —(eE/h)St and hdk/dt=-eE =F, so we obtain

dk _
dt

F

This is an important relation: in a crystal Adk/dt is equal to the external
force on the electron. In free space d(mv)/dt is equal to the force. We have
not overthrown Newton’s second law of motion: the electron in the crystal
is subject to forces from the crystal lattice as well as from external sources.



In a constant magnetic field B, the equation of motion is

hic

an electron moves in k space in a
direction normal to the direction
of the gradient of the energy ¢, so
that the electron moves on a
surface of constant energy. The
value of the projection kg of k on B
is constant during the motion. The
motion in k space is on a plane
normal to the direction of B, and
the orbit is defined by the
intersection of this plane with a
surface of constant energy.




Physical Derivation of Equations of Motion

We consider the Bloch eigenfunction i, belonging to the energy eigen-
value €, and wavevector k:

. = % Ck + G) explitk + G) * r]

The expectation value of the momentum of an electron in the Bloch state
kis
P, = (k|-iaV|k) = D ik + G)|[C(k + G)? =4k + D G|Ck + G)P) ,
G G
using X|C(k + G)] = 1.

We suppose that a weak external force is applied to the crystal in a time
interval such that the total impulse isJ = [F dt. We will have

J = APtot — APlat + APel



The change of momentum of the electron will be
Apy = AlAk + > AG[(V|C(k + G)P) - AK]
G

The change Ap,,; in the lattice momentum resulting from the change of
state of the electron is

Apy, = —ﬁ% G[(Vi|C(k + G)|* - AK] ,

The total momentum change is therefore
Apg + Apy, = J = fAk

Since dJ/dt = F, we thus have

hdk /dt = F




vectors of all electrons:

' E

Band Electron in E Field

Now we see that the external electric field causes a change in the k

B

SHE

dk B —eFE
dt dt h

If the electrons are in a partially filled band, this
will break the symmetry of electron states in the
15t BZ and produce a net current. But if they are
in a filled band, even though all electrons change
k vectors, the symmetry remains, soJ = 0.

When an electron reaches the 15t BZ edge (at k =
n/a) it immediately reappears at the opposite
edge (k = -m/a) and continues to increase its k .

As an electron’s k value increases, its velocity
increases, then decreases to zero and then
becomes negative when it reemerges at k = -1t/a.

Thus, an AC current is predicted to result from a
DC field (Bloch oscillations).



Properties of Holes

Holes are vacant orbits in a band whose properties are important in an
almost filled band.

A hole acts in applied electric and magnetic fields as if it has a positive
charge +e. The reason is given in five steps that follow:

1. Crystal momentum: k;, = -k,

The total wavevector of the electrons in a filled band is zero: Zk = 0,
where the sum is over all states in a Brillouin zone. This result follows
from the geometrical symmetry of the Brillouin zone: every
fundamental lattice type has symmetry under the inversion operation
r— —r about any lattice point; it follows that the Brillouin zone of the
lattice also has inversion symmetry. If the band is filled all pairs of
orbitals k and -k are filled, and the total wavevector is zero.

If an electron is missing from an orbital of wavevector k., the total
wavevector of the system is -k, and is attributed to the hole.



2. Energy: €,(k,) = —€,(k.)

The energy of the hole is opposite in sign to the energy of the missing
electron, because it takes more work to remove an electron from a
low orbital than from a high orbital.

€
€
\ Conduction band Hole band constructed

Q with ky, = -k, and
\ e,ky,) = —,(k,), to
simulate dynamics

s o of a hole.

kh
ke
~ l
Electron removed I k—
E G ke
Valence band Valence band
with one
electron missing




3. Velocity: v, =v,

The velocity of the hole is equal to the velocity of the missing electron.

Since Ve, (k;,) = Ve, (k,), so that v, (k;,) = v,(k,).

4. Effective mass: m, =-m,

Hole band constructed
with k;, = -k, and
e,k;) = —€,(k,), to
simulate dynamics

of a hole.

The effective mass is inversely
proportional to the curvature

d?e/dk?, and for the hole band
this has the opposite sign to

that for an electron in the
valence band.

Valence band
with one
electron missing




. . dkh 1
5. Equation of motion: % e e(E + 2 v, XB)
The equation of motion for a hole is that of a particle of positive

charge e.




Electrons and Holes

N/2 tN/2 R R
A full band can be written as: Z ki+k; =0 and Z ki=—-k;, =k,
i#+] i#+ ]

So when the state +j is empty in a band, the band has effective wavevector k_;.
Now the current flow in the incomplete band under the influence of a field

E: +N/2 +N/2
Z (—evl.)z Z (—evl.)—evj =0
i=t] i#+ ]
ev,

This shows that an incomplete band (state +j empty) behaves just like a
positive charge moving with the same velocity an electron would have in that
state. Thus the properties of all of the remaining electrons in the incomplete
band are equivalent to those of the vacant state j if the vacant state has:

a. A k-vector k_j

b. Avelocity v,; We call this vacant state a positive “hole” (h*)
c. A positive charge +e




Dynamics of Electrons and Holes

—_

V _
If this hole is accelerated in an applied electric field: m, 7;’ =+ek

dv _.
The corresponding equation for the electronis: m, d; =—eF

But earlier we deduced that the hole velocity is the
same as that of the corresponding “missing” electron: v, =v,

So by equating the derivatives we find: ek = _ek —  m, =-m,
m, m

However, note that near the top of a band the band curvature is negative,
so the effective electron mass is also negative. The corresponding hole
mass is then positive.

So the equation of motion of a “hole” in an electromagnetic
field is: ~
_ dk,

F=p _ e(E+\7h xB) This explains why some

dt metals have positive Ry,.



Band Effective Mass of an Electron

We can write the equation of motion of a Bloch electron in 1-D:

. - dv, dv_dk, nd dv. dv, d (1dE) 1d°E
= = N = = —_—— | = —
dt dk_ dt dk, dk, dk \nhdk, ) hdk
Also, from the acceleration theorem: dk, _F.
dt h
This gives: ) :ldzE(ij iy . 72 )
Y hdkl\ h o grE Y
dkj
With the analogy of F = ma, the band
effective mass is defined as: . K> iy " T °F
d°E =22 2
m* h” dk;
dk’

The effective mass depends on the electron’s energy and thus its location
in the band.



Physical Meaning of Effective Mass

. 2
For a free electron: 722 m* = hm__ m

E = x and K’

2m -

m

It is easy to generalize this to a 3-D solid to take account of an anisotropic
electron energy surface. We would find that m* is a second-order tensor

with 9 components:
1) 1 e do (1),
m* ), h*dk,dk, - dt m) "

where u, v are Cartesian coordinates.

The effective mass concept is useful because it allows us to retain the
notion of a free-electron even when we have a periodic potential, as long
as we use m* to account for the effect of the lattice on the acceleration
of the electron.



Physical Meaning of Effective Mass

Small mass

Large mass

0

The effective mass is inversely proportional
to the curvature of the energy band.

Near the bottom of a nearly-free electron band
m* is approximately constant, but it increases
dramatically near the inflection point and even
becomes negative near the zone edge.

dE/dk

(d®E[dk*)!

ot e PRI et S————




Metals, Insulators, and Semiconductors

e Metals are solids with incompletely filled energy bands

e Semiconductors and insulators have a completely filled or empty bands and
an energy gap separating the highest filled and lowest unfilled band.
Semiconductors have a small energy gap (E; < 2.0 eV).

Quick quiz: Does this mean a divalent element will always be an insulator?

Answer: In 1-D, yes, but not necessarily in 2-D or 3-D! Bands along different
directions in k-space can overlap, so that electrons can partially occupy both
of the overlapping bands and thus form a metal.

Energy

Insulator Metal Semimetal Semiconductor Semiconductor

But it is true that only crystals with an even number of valence electrons in a
primitive cell can be insulators.




Carrier Concentrations

Metals, semimetals, semiconductors

Metals

and insulators can be categorized by
their carrier concentrations at room
temperature. They can also be
differentiated by the electrical
resistivity at room temperature.
Semiconductors usually have this value
in the range of 102 to 10° ohm-cm,
and dependent on temperature

strongly. At absolute zero a pure,
perfect crystal of most semiconductors
will be an insulator with a resistivity
above 104 ohm-cm.




Intrinsic Carrier Concentrations

For a semiconductor, we want to know the concentration of intrinsic
carries as function of temperature T, in terms of its band gap E,.

The energy of an electron in the conduction band is €, = E, + #°%k*/2m,

i

The density of electron states per unit volume

ateis 1

2m

ﬁ2

De<€>=2—wz< ) (e —E,)”

Fermi-Dirac distribution for e-u >> kT

reduces to
fo=-expl(u—e)/kpT]

The concentration of electrons is

om. \32
n—f D, (e de = 27172<m> exp(u/kgT) X

J (e — E,)"” exp(—e/kyT)de
E,

which integrates to give

2( mkgT

3/2
> expl(n — E )/kgT]

o7rh?




Impurity Carrier Concentrations

For a doped semiconductor, we want to know the concentration of
conductive carries as function of temperature T and impurity energy levels
E,and E,. Neutrality condition demands 7+ Ny = p+ N{,, in which

Np = N} + Nfs np = Njy, = Np[l +exp(Ep — Eg) /2 T]7',

and »
Na =N} + Ny . pa = Ny = Na[l +exp(Er — EA) /2 T .

For the case of a pure n-type
4 Ec—Ep = EZ semiconductor, with N,* >>n,,
n

n~ Nj = Np — N}

~ ND <1 — ! ) .
I +exp[(Ep — EF)/# T]

Since Ec//AT Ep /AT
(n/NG)e™ T = 7T,

/ —E424T

Electron energy E




The distribution function f, for holes is related to the electron distribution

function f, by

f=1 1 _ 1

explle — whkyT1+ 1 expl(p — e)kyT] + 1

= expl(e — w)ksT] . provided (u — €) > kyT.

The density of hole states at € is
1 [ 2y, 72 1/2
D E. —€
h( > 277_ < ﬁ2 > < v >
The concentration p of holes in the valence band is

1k T 3/2
p = f Dy, (e)f(€) €_2<W;] pE ) exp|(E,— w)/kgT]

We multiply together the expressions for n and p to obtain the equilibrium
relation

kiT \3
np = 4(2 B ) (mmy,)>” exp(—E/kgT), E,=E.— E,

The product of np is constant at a given temperature.



For intrinsic carriers, n; and p,,

=p, = 2( K >8/2( )>/4 (— E /2kgT)
n; ; m,m ex

P 27h? " P g=mp
To obtain the Fermi level u, we start from n; = p;, so

mhk BT
27rh?

3/2 3/2
n; = 2( mekBT) expl(pn — E,)/kyT] = 2( ) expl(E,— w)/kgT] = p;

27h?

then,
exp(2u/ksT) = (my/m,)>> exp(E/kgT) ;

w = %Eg + 2 kT In (my/m,) .

If m, = m,, then u = E;/2 and the Fermi level is in the middle of the
forbidden gap.



Impurity Conductivity

Certain impurities and imperfections drastically affect the electrical
properties of a semiconductor. The addition of boron to silicon in the
proportion of 1 boron atom to 10° silicon atoms increases the
conductivity of pure at room temperature by a factor of 103. The
deliberate addition of impurities to a semiconductor is called doping.

We consider the effect of impurities in silicon and germanium. These
elements crystallize in the diamond structure. Each atom forms four
covalent bonds, one with each of its nearest neighbors, corresponding to
the chemical valence four. If an impurity atom of valence five, such as
phosphorus, arsenic, or antimony, is substituted in the lattice in place of
a normal atom, there will be one valence electron from the impurity
atom left over after the four covalent bonds are established with the
nearest neighbors, that is, after the impurity atom has been
accommodated in the structure with as little disturbance as possible.
Impurity atoms that can give up an electron are called donors.



Donor States

The impurity atoms of valence five such as P, As, and Sb are called donors
because they donate electrons to the conduction band in order to complete
the covalent bonds with neighbor atoms, leaving electrons in the band.

=Si =Si =Si =S| =Si =Si
| | | I | B [
—Si Si Si =S| =Si =Si =
_—l=_ ||
—Su =S —S|
I G§| I H
—s =5, =Si {F}s. Si =
Il ol I , i
=Sj =Si =Si =S| =Si =Si
o IS=-n
=S =S =5 =S =S =5i
R | | R | I |
a n—-doped silicon

Si =

=Si =

Si=

=Si

Electron energy E

A

n-semiconductor

Donor level

T v

Distance x

The extra electron moves in the coulomb potential e/er of the impurity ion,
where € in a covalent crystal is the static dielectric constant of the medium.



We estimate the ionization energy of the donor impurity. The Bohr theory
of the hydrogen atom may be modified to take into account the dielectric
constant of the medium and the effective mass of an electron in the
periodic potential of the crystal. The ionization energy of atomic hydrogen
is —e*m/2h? . In the semiconductor with dielectric constant € we replace e?
by e?/e and m by the effective mass m, to obtain

e4me m, hQ 053 R
E, —<13é6m>eV md ay= < (033€) ¢

2€’h? € me m,/m

E,is the ionization energy and a; the Bohr radius of the donor.

To obtain a general impression of the impurity levels we use m, =~ 0.1 m for
electrons in germanium and m, = 0.2 m in silicon. The static dielectric
constant €is 15.8 for Ge and 11.7 for Si. Then, we obtain

E, =5meV and a, = 80 A for Ge;
E, =20 meV and a, = 30 A for Si.



Acceptor States

LR | I | p-semiconductor

=351 =S1 =51 =S5 =Si =G =S = 4
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Trivalent impurities such as B, Al, Ga, and In are called acceptors because
they accept electrons from the valence band in order to complete the
covalent bonds with neighbor atoms, leaving holes in the band.



Carrier Mobility

The mobility is the magnitude of the drift velocity of a charge carrier per
unit electric field: = |U |/E .

The electrical conductivity is the sum of the electron and hole
contributions:

o = (new, + pew;,)

The drift velocity of a charge g was found to be v = gtE/m, whence
M = eT/m, ; Wy, = eT;/my, . where T is the collision time.

Table 3 Carrier mobilities at room temperature, in cm?/V-s

Crystal Electrons Holes Crystal Electrons Holes
Diamond 1800 1200 GaAs 8000 300
Si 1350 480 GaSb 5000 1000
Ge 3600 1800 PbS 550 600
InSb 800 450 PbSe 1020 930
InAs 30000 450 PbTe 2500 1000
InP 4500 100 AgCl 50 —

AlAs 280 — KBr (100 K) 100 —

AlSb 900 400 SiC 100 10-20



Thermoelectric Effect

The thermoelectric effect is the direct conversion of temperature differences
to electric voltage and vice versa via a thermocouple. The term
"thermoelectric effect" encompasses three separately identified effects:
the Seebeck effect, Peltier effect, and Thomson effect. The Seebeck and
Peltier effects are different manifestations of the same physical process;
textbooks may refer to this process as the Peltier—Seebeck effect.

The charge flux is, assuming only electrons involved,

Jo = n(—e)(—u,)E = new,E , where p, is the electron mobility.
Then the energy flux due to the electrons is
juo=nE, — p+ 3kgT)(—p,)E
each electron carries energy (E, — u) + 5 kT

The Peltier coefficient T is defined by j, = Tj,; or the energy carried per unit
charge. So,

Il,=—(E,—un+5kgT)e  for electrons

IL,=(u—E,+3kgT)e  for holes



Applications of Thermoelectric Effect

Eent = —SVT,

where S is the Seebeck coefficient (also known as thermopower).

temperature-sensing thermocouple

s A [
chromel | :f : copper | Trneter :
(I s |
| = sense ' | | | |
' : | ' : |
| ‘\r\ | | : |
¢ mne I » r |
alumel T : copper | :

K-type thermocouple (chromel-alumel) in
the standard thermocouple measurement
configuration. The measured voltage V can
be used to calculate temperature T, e,
provided that temperature T, is known.

thermoelectric cooler
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Bloch oscillations

The one-dimensional equation of motion for an electron with wave vector

k in a constant electric field E is:
dp dk el
7 pr e =) (t) = k(0)

Suppose the dispersion relation for a given banc £(k) = Acosak,

The group velocity v of the electron is given by
1 d€ Aa .
= —— = ——S8inak,
h dk h
and the electron position x can be computed as a function of time:

v(k)

z(t) = /0lt v(k(t"))dt' = z(0) + e% cos(%t) .

This shows that the electron oscillates in real space. The angular
frequency of the oscillations is given by

wp = ae|E|/h.
Bloch oscillations are not routinely observed because the electrons in a

periodic system undergo collisions with ions in the lattice much too
frequently, on the time scale of T (1014 s).



Hall Effect

To separately determine the carrier concentration n and the mobility u
appearing in the conductivity o = neu, one measures both the conductivity

and the Hall effect. The Lorentz force on an electron moving in the x
direction with velocity v, is:

Fy=—e(vxB), —e’y = ev,B—e’,=0.

Assuming that the current is carried
exclusively by electrons, we have

Jx=1/(bd) = —neuvy

and Hall coefficient (R,) is defined by

R, = ﬂ = —(ne)?
A H _ij - '

—{ QO |a—

The sign of R, gives the type of carrier.




Problems

Impurity orbits. Indium antimonide has £, = 0.23 eV, dielectric constant €
= 18; electron effective mass m, = 0.015 m. Calculate (a) the donor
ionization energy; (b) the radius of the ground state orbit. (c) At what
minimum donor concentration will appreciable overlap effects between
the orbits of adjacent impurity atoms occur? This overlap tends to
produce an impurity band—a band of energy levels which permit
conductivity presumably by a hopping mechanism in which electrons
move from one impurity site to a neighboring ionized impurity site.

Hall effect with two carrier types. Assuming concentration n, p; relaxation
times 7., T,; and masses m,, m,, show that the Hall coefficient in the drift
velocity approximation is o p — nb?
e (ptab)p
where b = u./u, is the mobility ratio. In the derivation neglect terms of
order B%. In SI we drop the c. Hint: In the presence of a longitudinal
electric field, find the transverse electric field such that the transverse
current vanishes. The algebra may seem tedious, but the result is worth

the trouble. Neglect (w_t)? in comparison with w_t.



3. A semiconductor with a band gap energy E, of 1eV and equal hole and
electron effective masses m,* = m,* = m, (m, is free electron mass) is p-
doped with an acceptor concentration of p = 1018 cm™3. The acceptor
energy level is located 0.2 eV above the valence band edge of the
material.

a) Show that intrinsic conduction in this material is negligible at 300 K.

b) Calculate the conductivity o of the material at room temperature (300
K), given a hole mobility of u, = 100 cm?/Vs at 300 K.

c) Plot the logarithm of the hole concentration, In p, versus reciprocal
temperature 1/T for the temperature range 100 to 1000 K.



